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A shear-acceleration wave is a propagating singular surface across which the 
velocity vector and the normal component of the acceleration are continuous, 
while the tangential component d of the acceleration suffers a jump discontinuity 
[GI. We here discuss plane-rectilinear shearing flows of general, non-linear, 
incompressible simple fluids with fading memory. Working within the framework 
of such planar motions, we derive a general and exact formula for the time- 
dependence of the amplitude u = [GI of a shear-acceleration wave propagating 
into a region undergoing a steady but not necessarily homogeneous shearing 
flow. When this expression is specialized to the case in which the velocity gradient 
is constant in space ahead of the wave, it assumes a form familiar in the theory of 
longitudinal acceleration waves in compressible materials with fading memory 
(cf., e.g., Coleman & Gurtin 1965, equation (4.12)). 

In  earlier work (1965) we observed that a planar shear-acceleration wave 
cannot grow in amplitude if it is propagating into a fluid in a state of equilibrium. 
It is clear from our present results that if the fluid ahead of the wave is being 
sheared, Iu(t)l not only increases, but can approach infinity in a finite time, 
provided u(0)  is of proper sign and Iu(0)l exceeds a certain critical amplitude. We 
expect this critical amplitude to decrease as the rate of shear ahead of the wave 
is increased. 

1. Introduction 
We here attempt to develop an exact theory of the growth and decay of sur- 

faces of discontinuity in non-linear, incompressible, viscoelastic fluids. After 
using Coleman & Noll’s (1961 a) analysis of rectilinear shearing motions of general 
simple fluids to obtain reduced forms of the dynamical equations, we apply 
recently found methods of calculating the amplitude of one-dimensional accelera- 
tion waves in materials with memory.? We find, as was mentioned in the sum- 
mary, that although a planar shear-acceleration wave propagating into a region 
in equilibrium is damped out, when such a wave advances into a region under- 
going a steady shearing flow, the wave amplitude can, if the conditions are right, 

t See, for example, Coleman & Gurtin (1965), Dunwoody & Dunwoody (1965), Varley 
(1965). It is possible to obtain our present results by specializing and combining theorems 
given by Coleman, Greenberg & Gurtin (1966), but we have found that for fluids it is 
easier and more instructive to start again from first principles. 
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approach infinity in a finite time. This result suggests an apparently new type of 
instability for steady shearing flows of viscoelastic fluids: the breakdown of a 
steady flow by the rapid growth of a disturbance involving a jump in the accelera- 
tion. In  terms more suggestive than precise, the greater the rate of shear in a 
steady rectilinear flow, the less resistant is the steady flow to shear waves. 

In  § 5 we derive and briefly discuss the linear field equations describing first- 
order perturbations about a simple shearing flow. On contrasting the exact 
theory of $5 6 and 7 with the linearized theory of § 5 ,  it becomes apparent that 
only the exact theory can yield the instabilities we have found. The reciprocal 
of the critical amplitude for the growth of an acceleration wave is proportional 
to the ‘ second-order instantaneous modulus ’, a material parameter which does 
not occur in linearized theories. 

When a molten polymer is extruded through a narrow tube or channel, the 
desired steady laminar flow is observed to break down at  a critical rate of dis- 
charge (Nason 1945; Spencer & Dillon 1949; Tordella 1956, 1957; Bagley 1957, 
1963). Although this failure phenomenon, called ‘melt fracture ’ or ‘elastic 
turbulence’, is often associated with entrance effects, there is experimental 
evidence that an already established steady shearing flow can break down 
within a narrow tube (Benbow, Charley & Lamb 1961; Tordella 1963). It appears 
to us possible that the onset of melt fracture may be due to the rapid growth of 
initially feeble sliear-acceleration waves of proper sign propagating into regions 
undergoing high rates of shear. It is likely that the attainment of infinite ampli- 
tude by a shear-acceleration wave signifies the formation of a vortex sheet across 
which there is a non-zero jump in the tangential component of the velocity. 
When using conventional extruders and dies, it is probably difficult, if not 
impossible, to distinguish, on the one hand, the formation of vortex sheets near 
the boundaries in accord with (6.35) from, on the other hand, a failure of ad- 
herence to the boundaries governed only by an ad hoc slip condition. We hope, 
however, that an experimenter will find a way to make the distinction and test 
our theory. The information summarized in table 1 on page 180 may be useful 
for this purpose. 

2. Concepts from the general theory of simple fluids 
We consider a flowing fluid body and let 5 be the place in space occupied at  

time cr by that material point X which occupies the place x at time t. For the 
dependence of 5 on x, t and cr we write 

5 = Xt(X, 4. (2.1) 

F ( 4  = grad,xt(x, 4, ( 2 . 2 )  

The gradient, with respect to x, of the deformation function xi, 

is the relative deformation gradient for X at time cr. Of importance in the theory 
of viscoelastic fluids is the function 0, defined by 

C ~ ( S )  = F( t - s )TF( t - s )  (0 < s < CO). (2.3) 

This function, called the relative strain-history of X up to time t ,  maps [ O ,  m) into 
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the space of symmetric tensors. For each s 3 0, G(s) is the right Cauchy-Green 
tensor at  X a t  time t - s, computed relative to the configuration a t  time t. Clearly 

with 1 the unit tensor. 
The stress T ( t )  a t  a material point X of an incompressible simple $wid is 

determined, to within a hydrostatic pressure, by the relative strain-history 
of X .  Thus, each incompressible simple fluid is characterized by a constitutive 
functional 3 such t'hat (cf. No11 1958; Coleman & No11 1959, 1961) 

cyo) = 1, (2.4) 

m 

T ( t )  = -pl + 5 (Ct(s)), 
s=o 

where p is the indeterminate hydrostatic pressure. It follows from the principle 
of material objectivity (No11 1958) that the functional 9 must obey the follow- 
ing identity in Ct for each constant orthogonal tensor Q: 

m 

9 (QCt(s )QT)  = Q s=o g ( C b ( s ) ) Q T  
s=o 

We do not assume, nor do we expect 3 to be a linear functional. 
Flow problems are usually stated in terms of the velocity field v. It is easy to 

show that when the field v = v(x, u) is specified for all times u < t ,  the function 
Ct is determined at each point. Indeed, if, for each x,  4 ( .  ) is that solution of the 

(2.7) 

(2.8) 

then E ( 4  = X t k 4  (c t ) .  (2.9) 

differential equation d 
- 4 ( 4  = V ( 4 ( 4 , 4 >  dC7 

which satisfies the end condition g(t) = x, 

Thus, v determines the deformation function xt in (2.1), and hence, in view of 
(2.2) and (2.3), v determines Ct. (Cf. Coleman & No11 1961u, $1.) 

Since only isochoric motions are possible in incompressible fluids, the velocity 
field here obeys the condition divv ~ o, (2.10) 

which is equivalent to (detCt(s)l = 1. (2.11) 

3. Basic properties of rectilinear shearing flows 
I f  in a fixed Cartesian co-ordinate system x, y, z ,  the velocity field has the form 

v" = 0, v* = v(x,t) ,  vz = 0, (3.1) 

then we say that the motion is a rectilineur shearingjlow. For such a flow, (2.10) 
is automatically satisfied, and the differential equation (2.7) with the end condi- 
tion (2.8) has the solution 

(3.2) 

Here <x(u), @'(a), e(a) are the Cartesian co-ordinates a t  time v of the material 
point X which has the co-ordinates x, y, z at time t. Employing (2.1)-(2.3), one 
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may easily verify that (3.2) yields the following expression for the matrix of the 
components of Ct(s) : 

(3-3) 

1+A"s)2 At@) 0 

with At the real-valued function on [0,00) defined by 

A+) = - aXv(x,c7)dc7 (0 < s < oo), (3.4) 

and called the relative shearing history at x. Here a, denotes the partial derivative 
with respect to x. 

Coleman & No11 (1961a, $5) have shown that (2.5), (2.6) and (3.3) imply that 
in a rectilinear shearing flow the components of the stress obey the relations 

m m 

T"v(t) = t (At(s)) ,  Txx(t) - TZZ( t )  = 81 (At($)),  
(3.5) 

s=o 

m 

TgY(t) - ! P ( t )  = 8, (A t (s ) ) ,  T" := Tvz= 0 
s=o 

where t, 8, and 8, are real-valued functionals obeying the identities 

m m 

t ( -A "s ) )  = - t (At ($) ) ,  
s - 0  s=o I 

1 m m 

d, ( -A "s ) )  = 8{ (#(s)), (i = 1,2). 
s=o s=o 

(3.6) 

The functionals t, 8, and 8, are determined when R in (2.5) is specified and are 
independent of the direction of shearing. 

We assume, as is usual, that the long-range body forces b acting on the fluid 
have a single-valued potential +: 

b = -grad+. (3.7) 

Therefore, it follows from (3.1) and (3.4)-(3.6) that the dynamical equations, 

divT+pb = p6, (3.8) 

with p the mass density, here take the simple form? 

axTx~-a , (p+p$)  = palv, a,Txx-pa,@ = 0, a,(p+p+) = 0. (3 .9 

An elementary analysis shows that these equations are equivalent to asserting) 

a, T X ~  + a( t )  = pa, v (3.10) 
that 

and T"" = 4 t )  Y + A t )  + P+, (3.11) 

where a and p are functions of t  only. The total driving force exerted on a column 

t See Coleman & No11 (1959) for the special case of st,eady shearing flow and Truesdell 
& No11 (1965, Q 11) for the present general case. 
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of fluid lying between the planes y = y1 and y = y2 is (cf. Coleman & No11 1959, 

By (3.4), (3.5), and (3.11), 
n 

(3.13) 

where A is the cross-sectional area of the column. Since A ( y 2  - y l )  is the volume of 
the column of fluid considered, it follows from (3.13) that a(t)  in (3.10) and (3.11) 
is the driving force per unit volume. 

I n  view of (3.4) and (3.5),, it is clear that when the specific driving force 
a = a( t )  is specified, (3.10) becomes a functional-differential equation for the 
function v in (3.1). We may write this equation in the form 

m 

a, t (AQ))  +a = pap(x ,  t ) .  
s=o 

(3.14) 

For the rest of this section, we assume that a is constant in time. 
As we intend to study the dynamical stability of steady-flow solutions of 

(3.14), let us now briefly review the salient properties of such solutions. 
For a steady rectilinear shearing flow, a,v = 0, and (3.4) reduces to 

h t ( S )  = -KS ,  (3.15) 

where 
d 
ax 

K = - V ( X )  (3.16) 

is called the rate of shear a t  x.  Thus, if the flow is known to be steady, (3.14) yields 

d 
- 7 ( K ) + a =  0, 
ax 

(3.17) 

where 7 is the shear-stress function familiar in the theory of steady viscometric 

7 ( K )  = t ( - S K ) .  (3.18) 

It follows from (3.6), that this function 7, mapping the real numbers into the 
real numbers, is an odd function: 

flows7 and defined by W 

s= 0 

7(  -K) = - T ( K ) ,  T(O) = 0. (3.19) 

We assume that 7 is invertible throughout its domain and denote its inverse 
function by T - 1 .  Clearly, (3.17) implies that 

7(K) = - C t X + p  

t See, for example, Coleman & No11 (1959). For a survey see Coleman, Markovitz & 
No11 (1966). 
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with p constant. Hence, in each steady rectilinear shearing flow the rate of shear 
K is given by an equation of the form 

K = 7-l( -O!X+p). (3.20) 

If the driving force a is zero, (3.20) yields K independent of x, and the velocity 

(3.21) 
function v takes the form 

with K and V constants. A steady rectilinear shearing flow for which v in (3.1) 
has the simple form (3.21) is called a simple shearing$ozo. A simple shearing flow 
with K = 0 may be called a state of equilibrium. 

Steady channel $ow is a steady rectilinear shearing flow between two infinite 
parallel plates which are both at  rest and parallel to the (9, 2)-plane. If we let d 
be the distance between the plates and place the (y, 2)-plane halfway between the 
plates, then the adherence condition yields the boundary conditions 

V = V + K X ,  

v( + i d )  = v( - i d )  = 0. (3.22) 

Since 7-l is an odd function, (3.22) is compatible with (3.20) only if p = 0, and 

(3.23) 
we have d 

ax 
-v(.) = K(X) = -7-l(ax). 

Integration yields the velocity function v for steady channel flow (cf., Coleman & 
No11 1959): 

(3.24) 

4. Assumptions of smoothness for constitutive functionals 
The postulate of fading memory introduced by Coleman & No11 (1960, 1961 b )  

asserts that constitutive functionals, such as F i n  (2 .5 ) ,  have continuous differen- 
tials with respect to a particular norm on a space of histories Ct. This norm is 
constructed in such a way that the values Ct(s)  of Ct at large s (i.e. occurring in the 
‘distant past’) receive less weight than the values at  small s. We here use this 
postulate, but since our present study is restricted to shearing motions governed 
by the functional-differential equation (3.14), it  is not necessary for us to discuss 
the theory of fading memory in full generality. We here confine our attention to 
the scalar-valued functional t. 

The functions in the domain of t are the relative shearing histories At. It 
follows from (3.4), that these shearing histories are functions on [O, co) obeying 

Z(0) = 0, (4.1) 

t ( W s ) )  
m and, therefore, the value 

s=o 

of t is determined by the restriction of At to (0, co). Thus, in a discussion of the 
functional t, we need not distinguish between a relative shearing history and its 
restriction to (0, co). 

Let h be a fixed in$uence function, i.e. a positive, monotone-decreasing, mea- 
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surable function with sh(s) square-integrable over (0, a), and let iP denote the 
set of measurable, real-valued functions g on (0, co) for which 11g11, defined by 

119112 = /ms(s)2h(b)2d% 0 (4.2) 

is finite. 
I n  our present'context, the postulate of fading memory asserts that there must 

exist an influence function h such that t has Z for its domain and is twice con- 
tinuously differentiable in the following sense: for each g in X there exists on 
X a bounded linear form, St(gl.), and a bounded, symmetric, bilinear form, 
Pt(g1. , . ), such that 

m W 

t (ds) + @)) = t (g(s)) +s"t ( g ( s ) l W  + &  (g(s)ll(s), W )  +O(11ql2) .  (4.3) 
s=o s = O  s=o s=o 

We assume that each of the functionals St(. I . ) and S2t(. I . , . ) is jointly continuous 
in all its arguments. 

The function space 2 forms a Hilbert space with the inner-product 

Since 

as a function of 1 in % is assumed to be both linear and continuous, this function 
can be represented as an inner-product with a function K in 3: 

;t (g(s)[Z(s)) = Im K(s)Z(s)h(s)2ds. (4.5) 
s = o  0 

Of course, K depends on the function g; putting 

G ( s )  = K(s)  h(s)2, 14.6) 

we assume that the mapping g -+ G'(s) is, for each s, a continuous functional over 
Z and that, for each g, G' has a bounded derivative 0". We further assume that 
the mapping g -+ G"h-2 carries iP into itself and is continuous. 

If g has the special form g(s) = - KS, the dependence of G'(s) on g reduces to a 
dependence on K which we may indicate by writing G'(K,s) . '~  It follows from 

(4.5) and (4.6) that f m  

Since K belongs to Af the function G(K, .), defined by 

G(K,s )  = - /: G ' ( ~ , s ) d s  = - K(s)h(s)2ds (0 < s -= a), (4-8) 

exists and lim G(K,s )  = 0; 
S--+CC 

(4.9) 

t Since we assume that sh(s) is square-integrable, functions of the form g(s) - - ~ 8  

are automatically in Z. 
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G(K, . ) is called the stress-relaxation function (for direction-preserving perturba- 
tions about the steady shear K ) .  We assume, as appears natural, the inequalities 

def 
E(K)  = lim G(K,s )  > 0, 

0. 

s-+n 

def 
Q’ (K ,  0) = lim G’(K, s) 

s+o 

(4.10) 

(4.11) 

The quantity E(K)  defined in (4.10), is the instantaneous tangent modulus (for 
shearing perturbations about, K ) .  Putting for 1 in (4.7) the constant function on 
(0,co) with value 1, we find that (4.8) yields 

(4.12) se s-+n 

m 

6t ( - ~ s I l )  = G’(~,s)ds = -limG(K,s). 
s=o 

Hence we have the following alternative expression for E(K) : 

m 

E ( K )  = - St ( -mi  1). 
s=n 

(4.13) 

It follows from the identity (3.6), that G’(K,s) and G(K,s )  are, for each s, even 

(4.14) 
functions of K :  

Therefore, we have E ( K )  = E( - K )  (4.15) 

G’( - K , s )  = G’(K,s), G( - K , s )  = G(K,s). 

and 

The number E(K),  defined by 

(4.16) 

(4.17) 

is the second-order instantaneous modulus (for shearing perturbations about K ) .  

The identity (3.6), implies that E(K) is an odd function of K :  

E ( - K )  = - E ( K ) .  (4.18) 

Hence Z(0) = 0; (4.19) 

i.e. the second-order instantaneous modulus is zero for shearing perturbations 
about a state of equilibrium (cf. Coleman & Gurtin 1965, $6). 

We have assumed that E ( K )  is strictly positive for all values of K including zero. 
We may now consider two possible types of behaviour for the function ,!?(.). 

K $. 0 * K E ( K )  > 0, (4.20) 
If 

then we say that the fluid is sheur-stiflening. Fluids for which 

K =!= 0 3 K E ( K )  < 0, (4.21) 

we call shear-softening. Of course, a fluid may be neither stiffening nor softening, 
but if (d/dK)E(K)I,,,O + 0, then the fluid is either shear-stiffening or shear-soften 
ing in an appropriate neighbourhood of equilibrium. 
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5. On a linear analysis of perturbations 

equations (3.1) take the form 
For a simple shearing flow with velocity function vo and rate of shear the 

with (5.1) 
wg = 0, wo” = wo(x), wg = 0, 

wo(x) = C + K ~ X ,  V,K, ,  = constant. 

As an illustration of a straightforward application of the smoothness assump- 
tions laid down in the previous section, we here derive the linear field equations 
which describe first-order perturbations of the flow (5.1), supposing that the 
perturbed flows are rectilinear shearing flows of the type (3.1) and that the 
specific driving force a is held zero. Thus, we write 

w(x, t )  = wo(x) + € W , ( 2 ,  t )  ( 5 4  

for the velocity function w in (5.1), and me seek, to within terms O(s), the form 
taken by the equation (3.14) with a = 0. 

The present calculations can be simplified by first differentiating (3.14) with 
respect to t :  m 

a,az t (Ays)) = pa;,u(x, t )  = €pa;v,(x,t). 
s=o 

I Here (3.4) becomes Z(s)  = - K ~ S  + eut(s), 

and, therefore, 
f - s  

Thus, (4.3) and the chain rule yield 

I m m m 

a, t ( h t ( S ) )  = 6t (At(8)la,ht(S)) = 6 6t ( -KoS+€W, (S) la , J (s ) ) ,  
s=o s=o s = o  

m m 

a,az t (h“8)) = € 6t ( -KOS+€Wt(S)Ia,a,Wt(s)) 
s=o S = O  

m 

+e262 t ( -KOS+€w“s)la,ot(s), a , d ( s ) ) J  
S = O  

m m 

Hence, a,ac t ( 2 ( s ) )  = € 6t ( - K o S I a , a , d ( S ) )  + O(s2). 
s=o .S=O 

Equation (4.7) and the last equation of ( 5 4 ,  when combined with (4.8), (4.9) and 
(4.10),, tell us that 

- a:v,(x, t ) ] d s  

m 

6t ( -~~Ja,a;d(s))  = G ’ ( K , , , S ) ~ , ~ $ ~ ( S ) ~ S  = G ’ ( K ~ , S ) [ ~ : V , ( ~ ,  t - S )  
P = o  

= 1 s) 8; w,(x, t - s) ds + E ( K ~ )  a; wl(x, t ) .  
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If we now substitute (5.7) and (5.8) into (5.3) and neglect the term O(e2) in 
comparison with the terms linear in e,  we obtain the following equation for vl: 

Integral-differential equations with this general form occur often in the linear 
theory of viscoelasticity. Of course, E ( K ~ )  is the initial value (4.10), of the stress- 
relaxation function (4.8) with K = K ~ .  

We emphasize that our derivation of (5.9) does not in any way assume that the 
underlying rate of steady shear, K ~ ,  must be small, although it does entail neglect 
of a term O(e2).  

In  addition to (4. lo), and (4.11)2, let us here assume, as also seems natural, that 
- G ‘ ( K ~ ,  s) is a non-negative, continuously differentiable, monotone-decreasing 
function of s on (0, co). Then (5.9) is a stable, well-behaved equation which can 
be solved using methods familiar in linear viscoelasticity. For example, (5.9) 
has solutions of the form 

vl(x, t )  = e-52 cos (w(t  - x/c))  = &?{e-(t+iu/c)X e i W t  >, t E ( - - , c o ) ,  xE[o ,a ) ,  (5.10) 

with w, 6 and c real, positive, numbers. If v1 in (5 .2 )  obeys (5.10) then we say that 
the motion (3.1) describes an infinitesimal, spatially damped, sinusoidal shear 
wave (with frequency w ,  attentuation [, speed c ,  and amplitude e ) ,  superimposed 
on a simple shearing flow with velocity gradient K ~ .  Such a periodic wave is 
called ‘infinitesimal ’, because for a general incompressible fluid it can satisfy the 
dynamical equation (5.3) only if the term O(e2) in (5.7) is neglected. Substitution 
of (5.10) into (5.9) yields 

where ( ? ’ ( K ~ ,  0) = G’(K,, s )  eciWsds. su” 
(5.11) 

(5.12) 

For each frequency w there is one pair of positive values of c and a satisfying 
(5.11) (see, for example, Berry 1958; Hunter 1960, $3;  or Coleman & Gurtin 
1965, $7 ) :  

JE(K,) + G’(K,, o)l 

(5.13) 

We have observed that G ( K ~ , s )  is, for each s, an even function of K ~ .  Hence, 
(5.13) implies that, for each value of w, the wave speed G and the attenuation [ 
are even functions of K ~ .  The equation (5.13) and the assumptions made about 
G ‘ ( K ~ ,  . ) imply that the high-frequency limits 

C ( K ~ , C O )  = lim c ( K ~ , w ) ,  ~ ( K ~ , w )  = lim ~ ( K ~ , w ) ,  (5.14) 
W+W W+Oo 
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exist and are given by 

175 

(5.15) 

Of course, these limiting values are also even functions of K ~ .  

6. General theory of rectilinear shear-acceleration waves 
Leaving behind the linearized expressions of the previous section, let us return 

to the exact theory of the dynamical equations (3.14). We are interested in the 
motion and stability of singular surfaces across which derivatives of the function 
v of (3.1) have jump discontinuities. Such singular surfaces may be called 
rectilinear shear waves. 

Therefore, a rectilinear shear wave is, at  each time t ,  a planar surface perpen- 
dicular to the x-axis of the fixed co-ordinate system in which (3.1) holds. If we 
write xt for the value of the x co-ordinate on this surface, then the velocity of the 

d 
at 

wave is 
u = u( t )  = -xi. 

We assume that v(x, t )  and all its derivatives afafv(x, t )  are continuous functions 
of the pair (x, t )  whenever (x, t )  + (xt, t )  and that these quantities suffer, at  worst, 
jump discontinuities [v],  [at@w], across the wave. 

Those rectilinear shear waves for which 

[v] = 0, while [4v] =+ 0 and [a,*] =+ 0, (6.21 

we call shear-acceleration waves. Here we derive exact formulae for the velocity 
and the amplitude, a = a(t)  = [a,v], 

of shear-acceleration waves, assuming that the specific driving force a is constant 
in time and that the wave is moving into a region undergoing a steady rectilinear 
shearing flow. Thus, taking the wave velocity u( t )  to be positive, we suppose that 
for all x 2 x, and t 2 0 

vz(x, a) = 0, vY(x, CT) = v(x),  vz(x, a)  = 0, for --oo < fl < t. (6.4) 

Let a,vt be the function on (0, co) given by 

a,vt(s) = 8,v(x,t-s) (0 < s < 00). 

Ahead of the wave, by (6.4), 

(6.5) 

a,vt(s) = K (0 < s < 00) with K = ~ ( x )  = a,v(x), (6.6) 

and the function At of (3.4) is given by (3.15); hence At and azvt both lie in X 
Furthermore, an argument we have given for a related problem (Coleman & 
Gurtin 1965, pp. 253,254) can be applied to show that the 2P valued-functions 

(x, t )  +At and (x, t )  -+a,wt (6.7) 

are both continous across the acceleration wave with respect to the norm 
11 . / I  on 2 At the wave At and a,vt are given by 

A"$) = --SKI, a , d ( S )  = Ki (0 < s < a); (6.8) 
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here K, denotes the value of a,v(x, t )  just ahead of the wave: 
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d 
K~ = ~(x,) = lim - v(x), 

x+x: dx 
with v the function shown in (6.4). 

is differentiable when x $. x,; in fact, 
Employing (3.4) it  is not difficult to show that the Yi-valued function t+A, 

a t 2 ( s )  = ZJ,v(x,t-s) - a,v(x,t) = a , v ~ ( S ) - a , W ( X , t ) .  (6.10) 

Hence the chain rule 
m 00 

a,TZU(x,t) = at t (At)  = 6t (At(s)la,At(s)) (6.11) 
S = O  s=o 

and the linearity of 6t(. I .) in its second argument yield 

a m 

a,T"U(x, t )  = 6t ( # ( S ) p x d ( 8 ) ) -  6t (Ays)p)a,V(x,t) .  (6.12) 
s=o s=o 

Since &(.I.) is continuous over % x x  and the %-valued functions (6.7) are 
continuous across the wave, (6.12) and (6.8), tell us that 

[4T"U] = - m d [ a , V l ,  (6.13) 

where 
W 

E(K,) = - 6t ( -K tS I  1). 
s=o 

(6.14) 

In  view of (4.13), we may call E(K,)  the instantaneous tangent modulus at the wave. 
Since the smoothness assumption for t laid down in 9 4 implies that the func- 

tional t is continuous over the equation (3.5), and the continuity of the 
%-valued function (6.7), imply that TxU is continuous across the wave. By 
Maxwell's theorem and the continuity of v and T x U ,  we have 

[a,v] = -w[a,v] and [a ,Tzy]  = -u[a,T"v]. (6.15) 

Furthermore, since a! is constant, it follows from the dynamical equation (3.10) 
that [a, T " U ]  = p[ a, v] . (6.16) 

Equations (6.13), (6.15) and (6.16) imply that 

(p-u2Et)[a,v] = 0. (6.17) 

Thus, for the velocity u of a shear-acceleration wave entering a region where (6.4) 

(6.18) 
holds, we have the formula 

with E ( K ~ )  given by (6.14). 
If we differentiate (6.12) with respect to  t ,  employ (6.10), and recall that 

S2t(htl .,.) is a symmetric bilinear form, we obtain 

u ( t )  = ( - w t ) / P ) 4  

m a 

s=o s=o 
a;T"yx,t) = @-- St (Aqs)p)a,a,v(x,t)+ 62t (At(s)Ia,vl(s),axvl(s)) 

m 00 

+ 6t ( A ' ( ~ ) l l ,  l ) ( a , ~ ( ~ , t ) ) ' - 2  S2t (At(s)ll,a,d)a,v(x,t), (6.19) 
s=o s=o 
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with 
(6.20) 

An argument we have given elsewhere (Coleman & Gurtin 1965, $2, equations 

(6.21) (2.26)-(2.34)) shows that 

with G'(K~ ,  0 )  equal to G'(K, 0 )  of (4.11) evaluated at  the wave, i.e. at the value 
(6.9) of K found just ahead of the wave. Therefore, (6.19), (4.17), (6.8), and the 
continuity of the functions (6.7) yield 

[ @ I  = G'(K1, O)[a,vI, 

[8qTzy] = G'(Kt,O)[a,V] + ~ ( ~ t ) [ a t a , v ] + g ( K ~ ) [ ( a z V ) 2 ]  - 2 g ( K t ) K t [ a z V ] ,  (6.22) 

and since? [(a,v)2] = zKt[a,Vl +[a,v12, (6.23) 

we have [a:T"q = G'(Kf, o)[a,v] +E(4la,a,v] +g(4)[azv]2,  (6.24) 

with ~ ( K J  the second-order instantaneous modulus evaluated at the wave, i.e. 
00 

g ( K t )  = 6't ( -  K l S l 1 ,  1). (6.25) 

A general formula (see, for example, Truesdell & Toupin 1960, equation 
(191.8); or Coleman & Gurtin, 1965, equation (2.4)) for the rate of change of 
jump discontinuities tells us that 

s = o  

(6.26) 
d 3 [a, T z y ]  = [ aq T X Y ]  + u[ a, a, TI,  

(6.27) 
d 
-a(t) = [a;v] +u[a,atv]. 
at and, by (6.3), 

Of course, (3.10) here yields [a,azT5~] = p[a;v]. (6.28) 

By combining (6.26)-(6.28) with (6.15) and (6.16), we obtain the equation 

(6.29) 

which, by (6.18), can be written 

(6.30) 2p .Ju - (a  Ju) = E( K ~ )  [ 8,a, v] - [a? T Z U ] ,  

since u = u( t )  is assumed positive. Therefore, it follows from (6.24) and (6.15), 

(6.31) 
that 

2pJu- ( a J u )  = - G ' ( K ~ ,  O)[a,v] - ~ ( K ~ ) [ ~ , V ] ~  

d 
at 

d 
at 

a 
= G'(K~,  0)  - - E ( K ~ )  

u 
(6.32) 

This last expression may be written as a differential equation of Bernoulli type: 

(6.33) 

t See, for example, Coleman, Greenberg & Gurtin (1966, equation (1.10b) with 

db 
-++(t)b+v(t)b2 = 0, at 

b = b(t)  = a(t)u( t )a ,  

f = g = a,v andf(t)+ = g ( t ) +  = K ~ ) .  

12 Fluid Mech. 33 
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with 
(6.34) 

The differential equation (6.33) is easily solved to complete our proof of the 
following theorem. Consider a shear-acceleration wave, of positive velocity u ( t ) ,  
which since time t = 0 has been advancing into a region undergoing a steady recti- 
linear shearingJlow (6.4); the amplitude a( t )  of such. a wave obeys the formutat 

J O  
with v and y given by (6.34). 

If the fluid ahead of the wave is undergoing a rectilinear shearing flow that is not 
steady, i.e. if v in (6.4) depends on time, then an expression of the general form (6.35) 
still holds, but ~ ( t )  and v(t) are not given by (6.34). (Cf. Coleman, Greenberg & 
Gurtin 1966, 93). 

7. Waves entering regions undergoing simple shearing flow 
We here examine the special case in which the equations (6.4), which give the 

velocity field ahead of the wave, describe a simple shearing flow and therefore 
reduce to 

v”(q a) = 0, v”(x, a) = V +  K ~ X ,  ~ ” ( x ,  g) = 0, for -co < a 6 t ,  x 2 x,, 

with V and K~ constants independent of x and t. In  this case, the expression 
(6.18) for the velocity u of a shear-acceleration wave reduces to 

(7.1) 

u = (E(K,) / f  )*, 
and thus u is constant in time. 

If we suppose that the shear-acceleration wave has been advancing into the 
region (7.1) since time t = 0, then its amplitude a(t)  obeys, by (6.35) and (7.2), 
the following simplified form of (6.35): 

here 

A 
a(t) = (A- 1)eyt+ 1’  (7-3) 

- G ‘ ( K o ,  0) - const., A = A(K = const.; (7.4) 

E ( K ~ )  is the initial value (4.10)1, and 0) is the initial slope (4.1 1)1 of the stress- 
relaxation function for shearing perturbations about the steady shear K ~ ,  while 
X ( K ~ )  is the second-order instantaneous modulus (4.17) for shearing perturba- 
tions about K ~ .  

If the fluid be such that G ’ ( K ~ ,  0) = 0, the equation (7.3) becomes$, 

7 The derivation we have given here appears to us more direct and transparent than 
the proofs given by Coleman, Greenberg & Gurtin (1966) for their theorems 3.1, 7.1 and 
7.2, which, taken together, also imply that (6.35) holds for fluids obeying the postulate of 
fading memory. 

1 Of course, for a perfect fluid not only is G’(K~,O)  zero but so also is E(K,,), and (7.5) 
reduces to a( t )  E a(0) while (6.18) becomes u 0. 
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For the rest of this discussion we shall assume that the inequality in (4.11)2 

(7.6) G ’ ( K ~ , O )  < 0. 

The equations (5.15), (7 .2)  and (7.4) yield the following relations between the 
parameters describing shear-acceleration waves and those characterizing in- 
finitesimal sinusoidal waves (5.10) superimposed on the same underlying simple 
shearing flow: 

is strict: 

u ( K ~ ) ~  = lim c ( K ~ ,  w ) ~ ,  Y ( K ~ )  = lim C ( K ~ ,  w )  c ( K ~ ,  w ) .  (7.7) 
w-m w+m 

We note that the theory of infinitesimal sinusoidal waves contains no analogue 
of the parameter l / A  occurring in the exact formula (7.3). This is not surprising, 

(7.8) 

for l / A  is proportional to m 

s=o 
d ( K o )  = S2t ( -SSKOll, I) ,  

and such second derivatives of t  do not occur in the first-order term exhibited in 
(5.7). 

When ~ C ( K ~ )  = 0, (7.3) reduces to 

a(t) = a(0) e - y t .  (7-9) 

Of course, it follows from (7.4), (7.6) and (4.10), that y = Y(K,,) is positive. 
As we saw in (4.19), i?? = 0 when /c0 = 0. Thus, the amplitude of a shear- 

acceleration wave propagating into a region at equilibrium decays to zero 
exponentially. (Cf. Coleman & Gurtin 1965, remark 6.1.) 

Since d may be non-zero when K~ + 0, if the region ahead of the wave is not 
in a state of equilibrium, the wave-amplitude need not decay to zero. In  fact, 
when i ? ? ( ~ ~ )  f 0, the number ]A1 plays the role of a critical amplitude. Because we 
take u to be positive and assume (4.10), and (7.6), the equation (7.3) has the 
following properties. If la(0)l < Ihl or if sgn a(0) = sgn8, then a(t)-+O mono- 
tonically as t+co. If a(0) = A, then a(t)  = a(0). On the other hand, if both 
la(o)l > Ihl and sgna(0) = -sgnd(Ko), then la(t)l -+CO monotonically and in a 

finite time t,, given by 
(7.10) 

Y 
Let us now further assume that 

K f 0 3 @ ( K )  =k 07 (7.11) 

so that either (4.20) or (4.21) holds. Then, by (7.4), (7.2), (7.6) and (4.10), 

KO $: 0 5 0 < Ih(Ko)l  < CO; (7.12) 

i.e. when the simple shearing flow (7.1) does not reduce to a state of rest, the 
critical amplitude lh(/c0)I is finite and non-zero. Thus, by the observations made 
above, when K~ + 0, if the magnitude of the wave-amplitude a(0) is sufficiently 
small or if a(0) has the same sign as i ? ? ( ~ ~ ) ,  an acceleration wave entering a region 
undergoing the motion (7.1) is ‘damped out’. If, however, a(0) exceeds A ( K ~ )  
in magnitude and has its sign opposite to that of d ( ~ ~ ) ,  then the wave ‘blows up ’, 
i.e. achieves an infinite amplitude in a finite time t,; we suppose, albeit a proof 
is lacking, that the approach of a = [%v] to infinity signifies the appearance of a 

12-2 
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discontinuity in v a t  time t,. A surface across which the function v in (3.1) 
suffers a jump discontinuity [v] $: 0 is called a vortex sheet. 

If a vortex sheet is formed at  t = t ,  from a shear-acceleration wave, then we 
expect [v] for t > t ,  to agree in sign with [a,v] for t < t,, and we can easily show 
that the sign of [a,v] is determined, as shown in table 1, by two pieces of informa- 
tion: (a )  knowledge of whether the fluid is shear-stiffening ( /co . i?( /c0)  > 0) or 
shear-softening (/c0 l ? ( / c 0 )  < 0) ,  and ( b )  knowledge of whether the wave is propagat- 
ing in the direction of increasing shear-velocity (/cO > 0) or decreasing shear- 
velocity ( K ~  < 0). This is a consequence of the fact that we can have a(t)-+oo 
only if sgna(0) = -sgn.i?(/c0). If we suppose the fluid to be shear-stiffening and 
let /c0 be positive, then l ? ( / c 0 )  is positive and a(t)  3 0 0  only if a(0) is negative, in 
agreement with the first line of table 1. Similarly, if we again assume the fluid to 
be shear-stiffening, but let /c0 be negative, then we have E(/c0) negative and 
a(t)+oo only if a(0) is positive, in agreement with the second line of table 1. 
Analogous arguments for shear-softening fluids verify the third and fourth lines. 

Required sign o f  
Sign of [a,v] to have 

Type of fluid KO I [ a P l l  -+ -20 

Shear-stiffening + 
Shear-stiffening - 

Shear-softening + + 
Shear -softening - - 

- 

+ 

TABLE 1. Determination of the sign of the amplitude of those shear-acceleration waves 
which ‘blow up’. We assume the co-ordinate system is so chosen that the wave velocity 
is positive. 

By (7.4), (7.2) and (4.19) the critical amplitude ]h(/c0)l is infinite when K~ = 0, 
and, if we assume (7.11), Ih(/c0)I is finite for /c0 += 0. This suggests that Ih(/c0)l 
should be a monotone decreasing function of /c0 near /c0 = 0, although a proof is 
lacking. 

We may summarize as follows the observations made so far in this section. 
Consider a shear-acceleration wave propagating into a region undergoing the 
simple shearing motion (7.1). Albeit it  is impossible for such a wave to grow in 
amplitude when = 0, the wave can achieve infinite amplitude and form a vortex 
sheet if /c0 $: 0, provided [4v] isof proper sign and exceeds in magnitude a critical 
amplitude. We expect the critical amplitude to decrease as the rate of shear /c0 

ahead of the wave increases, at least for /c0 near to zero. Furthermore, table 1 
tells us that for a shear-stiffening fluid a shear-acceleration wave moving in the 
direction of increasing (decreasing) shear velocity 2) can achieve infinite amplitude 
only if [4v] is negative (positive). On the other hand, if the fluid is shear-softening, 
a wave moving in the direction of increasing (decreasing) velocity can achieve 
infinite amplitude only if [a,v] is positive (negative). 

If the region ahead of the wave is undergoing a steady rectilinear shearing flow 
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(6.4) for which K = dv(x)/dx does not reduce to a constant K,, independent of x ,  
the amplitude formula (6.25) does not reduce to (7.3). In  such cases, an analysis 
of the stability of the wave becomes more difficult than here, but can be per- 
formed? if E,  E ,  and G'(0) are known ahead of the wave, i.e. if E(K),  E(K)  and 
G'(K, 0 )  are known as functions of K and if K is known as a function of x. Of course, 
the most important case of a rectilinear shearing flow with the driving force a 
constant in time but not zero is steady channel flow, for which K is given by 
(3.23). If we assume, as is usual, that T ,  and hence T - ~ ,  is a monotone increasing 
function, then it follows from (3.23) that I K I  is a maximum at the bounding 
surfaces x = & i d .  From this and the observations made above for simple shearing 
flow, we may conclude that a shear-acceleration wave propagating into a fluid 
undergoing steady channel flow is more likely to transform into a vortex sheet 
when it is near rather than far from the bounding surfaces. 
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